

Geometry-Sensitive, Solver-Independent Mesh Adaptation Using Hybrid Viscous and Hex-Core Meshing Techniques

Travis Carrigan, Senior Account Technical Executive, Cadence Nick Wyman, Software Engineering Director, Cadence

"A single engineer/scientist must be able to conceive, create, analyze, and interpret a large ensemble of related simulations in a time-critical period, without individually managing each simulation, to a pre-specified level of accuracy." - CFD Vision 2030 Study

Technology and Solutions

Multi-disciplinary simulation you can trust

GEOMETRY PREPARATION

- Native CAD import
- Geometry creation, manipulation, and repair
- Tolerance-based healing and sealing

MESH GENERATION

- Multiblock structured
- Volume-to-surface unstructured
- Surface-to-volume unstructured
- Adaptation and high-order
- Parallel mesh generation

SIMULATION

- Density and pressure-based unstructured finite-volume solvers
- Block-structured solver for rotating machinery
- Combustion, fluid-structure interaction, free-surface modeling, and cavitation

ANALYSIS AND OPTIMIZATION

- Postprocessing of mesh and solution data
- Multi-disciplinary design optimization
- Sensitivity analysis and uncertainty quantification

From CAD to Analysis, and Everything in Between

Solutions Portfolio

OMNIS/Autoseal

Pointwise[®]

Structured.

high-order,

unstructured.

and adaptive meshing

Automated

geometry sealing tool

The flexibility you've been looking for

OMNIS/Agile

OMNIS CAD tools

Unstructured

meshing

Multiblock structured

meshing

Geometry create

and repair tools

Rotating

machinery design

"The powerful meshing capability that Pointwise provides has been a great asset to our team. In addition, its **flexibility** has made **integration** with the rest of our tools remarkably easy."

Tim MacDonald

Co-founder and CTO, Exosonic, Inc.

"Pointwise's bottom-up meshing methodology inherently gives the user greater **control** over the surface, capturing its details, eliminating the postmeshing anomalies that result from using a top-down meshing methodology, saving a great amount of time (and frustration)."

Matthew Graczyk
CEO, PteroDynamics

Workshop and Benchmark Participation

AIAA High-Lift Prediction

AIAA Drag Prediction

AIAA Geometry and Mesh Generation

AIAA Sonic Boom Prediction

AIAA Airframe Noise Computations

High-Order CFD Methods

International Meshing Roundtable

Potsdam Propeller Test Case

DrivAer

Intracranial Aneurysms

Pointwise Product and Technology

Geometry

Overset

Plugins

High-Order

Structured

Adaptation

Hybrid

Automation

Flashpoint

Voxel Meshing

Adaptation

Pointwise

CFD Solver

Why Re-Mesh for Adaptation?

Fixed-mesh best-practice utilizes high-quality quasi-structured meshing for geometry and solution resolution

Re-meshing allows us to continue use of quasi-structured meshing where appropriate

Maintain geometry associativity

Achieve multiple objectives for the mesh while maintaining element quality

Automatic once initial mesh is created

Discretization Error

$$\phi(x+h) = \phi(x) + \frac{\partial \phi}{\partial x}(x)h + \frac{\partial^2 \phi}{\partial x^2}(x)h^2 + \cdots$$
supported truncated

Taylor series expansion of variation about x Infinite series is continuous, Truncated series is a discrete approximation

Discretization error can be controlled by reducing truncation error

Discrete solution on mesh h connecting DOF 1-2

$$\phi^L\left(\frac{h}{2}\right) = \frac{1}{2}(\phi_1 + \phi_2)$$

Linear interpolation of discrete solution

$$\phi^{H}\left(\frac{h}{2}\right) = \frac{1}{2}(\phi_{1} + \phi_{2}) + \frac{h}{8}\left[\frac{\partial\phi}{\partial x_{2}} - \frac{\partial\phi}{\partial x_{1}}\right]$$

Cubic interpolation of discrete solution

$$\varepsilon\left(\frac{h}{2}\right) = |\phi^L - \phi^H| = \frac{h}{8} \left| \left[\frac{\partial \phi}{\partial x_2} - \frac{\partial \phi}{\partial x_1} \right] \right|$$

Leading truncation error estimate

Adaptation Sensor

Requirements

- Proportional to interpolation error
- Preserve boundary layer anisotropic mesh
- Smooth size field

$$S \propto |\vec{h}| \left| \left[\frac{\partial \vec{\phi}}{\partial x_2} - \frac{\partial \vec{\phi}}{\partial x_1} \right] \right|$$

 $\varepsilon\left(\frac{h}{2}\right) = \frac{\vec{h}}{8} \left[\frac{\partial \vec{\phi}}{\partial x_2} - \frac{\partial \vec{\phi}}{\partial x_1} \right] = T$

- No protection for solution discontinuity

$$S = K \left| \vec{h} \right|^p \left| \left[\hat{\vec{h}} \cdot \frac{\overrightarrow{\partial \phi}}{\partial x_2} - \hat{\vec{h}} \cdot \frac{\overrightarrow{\partial \phi}}{\partial x_1} \right] \right|$$

- Emphasis on larger than average edges (typically 2)

(near-wall physics model)

(solver convergence)

Adaptation "p" Control

$$S = h^{\mathbf{p}} \left| \hat{\overline{h}} \cdot \left(\frac{\overline{\partial \phi}}{\partial x_2} - \frac{\overline{\partial \phi}}{\partial x_1} \right) \right|$$

p = 2.5

p=4.0

Adaptation Mesh Size Control

Adapt where $S > S_{Thresh}$

$$b_{Target} = |\vec{h}| \sqrt[p]{\frac{S_{Thresh}}{S}} \rightarrow \text{point cloud}$$

Continuous Mesh Complexity¹

$$C(\mathcal{M}) = \int_{\Omega} \sqrt{\det(\mathcal{M})} \, d\Omega$$

- Correlates with number of nodes in the conformal mesh
- Discrete complexity:

$$C_{Current} = \sum_{i=1}^{N} \left(\frac{1}{{h_i}^3}\right) V_i$$
 using $h_{Current}$

$$C_{Adapt} = \sum_{i=1}^{N} \left(\frac{1}{h_i^3}\right) V_i$$
 using h_{Target}

Find S_{Thresh} such that $C_{Adapt}/C_{Current}$ matches adaptation growth rate (e.g. 1.3)

¹Loseille, A. and Alauzet, F., "Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error," SIAM Journal on Numerical Analysis

DrivAer Fastback Model, TUM

Baseline Mesh + Solution

Sparse Adaptation Point Cloud

Baseline Mesh

Mesh Cycle-5

cādence°

Converged Mesh

Converged Mesh

Truncation Error and Total Drag vs Adapted Mesh

Cd Results for Fastback Car

Surface	Exp. Data	Adapt N = ∞	Adapt % Error	Soares ¹	Soares ¹ % Error
Body	n.a.	0.163		0.170	
Mirrors	n.a.	0.011		0.010	
Wheels	0.063	0.065	+0.8%	0.052	-4.4%
Total	0.251	0.239	-4.8%	0.232	-7.6%

¹Soares, R.F., Garry, K.P., Holt, J., "Comparison of the far-field aerodynamic wake development for three DrivAer Model configurations using a cost-effective RANS simulation", SAE World Congress Experience, 4 - 6 April 2017, Detroit, Michigan, USA

Solver Convergence

The cumulative time for all adaptation cycles is equivalent to a single solution on a best practice mesh making adaptation an efficient strategy for automatically resolving multiple operating points.

Thank You!

Please visit www.pointwise.com for more information and if you have any questions about Cadence Pointwise, please contact Travis Carrigan at travis.carrigan@cadence.com.

cādence

© 2021 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks or fall MIPI specifications are registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks or trademarks are the property of their respective owners.